skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharan, Deepti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The use of engineered nanomaterials, defined as those smaller than 100 nm, in the health, energy, agricultural, and environmental sectors is expanding rapidly. As such, human and environmental exposure to these materials is increasing every day. For example, metal-based nanomaterials, such as nanosilver, have become ubiquitous in antibacterial applications ranging from socks and baby bottles to healthcare materials, such as oral fillings. Engineered nanomaterials are also used as antibacterial agents and adjuvants to improve antibiotic delivery or efficacy. However, even nanomaterials that were not designed to be antimicrobial can possess potent bactericidal activity. Alarmingly, there are clear connections between nanomaterial exposure, metal resistance, and antibiotic resistance and it is crucial that we dramatically improve our understanding of both the toxicity of these materials and their ability to permanently change the organisms that they encounter. Emerging research indicates that microbes are capable of adapting to nanomaterial toxicity, often with the same generalizable mechanisms used to overcome antibiotic toxicity. In this perspective, we highlight existing knowledge about microbial response to engineered nanomaterials and the key outstanding questions that must be addressed. 
    more » « less
  2. Use of complex metal oxide nanoparticles has drastically risen in recent years, especially due to their utility in electric vehicle batteries. However, use of these materials has outpaced our understanding of how they might affect environmental organisms, which they could encounter through release during manufacture, use, and disposal. In particular, little is known about the effects of chronic exposure to complex metal oxide nanoparticles. Here, we have focused on an environmentally-relevant bacterial species, Shewanella oneidensis, which is ubiquitous in nature and responsible for bioremediation of heavy metals, and assessed the toxic effects of nanoscale lithiated nickel manganese cobalt oxide (NMC), which is an emerging battery cathode material for electronic devices. We previously reported that chronic exposure of S. oneidensis to NMC results in the emergence of an adaptive phenotype where the bacteria are able to tolerate otherwise lethal concentrations of NMC. In the present study, we aim to investigate the role of reactive oxygen species (ROS) and changes in phenotype of the NMC-adapted bacterial population. We found that NMC-exposed bacteria possess ROS-containing membrane vesicles, as well as an increased propensity to generate random DNA mutations and harbor other DNA damage. Thus, our data indicate substantial genetic-level variation in bacteria that results from chronic exposure to toxic complex metal oxide nanomaterials. 
    more » « less